赤茯苓又叫什么| 妲己是什么生肖| 过期的牛奶有什么用途| 两个子是什么字| 无缘无故吐血是什么原因| 3月5号是什么星座| 遥字五行属什么| 算命先生是什么生肖| 海带吃了有什么好处| 画地为牢什么意思| 有什么花| 老夫是什么意思| 洛阳白马寺求什么最灵| 妍什么意思| 关门弟子是什么意思| cream什么意思| 露酒是什么| 耳朵轮廓痒是什么原因| 松花蛋不能和什么一起吃| 珍珠鸟吃什么| 牛筋草有什么作用| 孕妇吃什么蔬菜好| dic是什么病的简称| 黄帝内经是什么时期的| 什么颜色属水| 黄体不足吃什么药| 肌肉型肥胖是什么意思| 磨牙是缺什么| 渗透率是什么意思| 委曲求全是什么生肖| 椎管狭窄吃什么药| mpa是什么单位| 唐筛是检查什么| 张家界莓茶有什么功效| 生育保险有什么用| 胎盘位于子宫后壁是什么意思| 龙根是什么| 肉蔻炖肉起什么作用| 梦见剃光头是什么预兆| 什么是汛期| 贵州有什么好玩的| 什么食物黄体酮含量高| 印泥干了用什么稀释| cor是什么意思| 区团委书记是什么级别| 鬼子来了为什么被禁| 兰精莫代尔是什么面料| 支原体吃什么药最有效| 玻璃是什么做的| 喜用神是什么| 中国的全称是什么| 心脏支架是什么病| 整天想睡觉是什么原因| 求租是什么意思| 翻新机是什么意思| 红豆生南国什么意思| 海员是干什么的| 脸痒痒是什么原因| 什么病会引起背部疼痛| 舌头发紫是什么原因| 癸水是什么| 中国最长的河是什么河| 男士生育检查挂什么科| 什么南瓜| 梦见抬棺材是什么意思| 宝宝缺钙吃什么补得快| 胃属什么五行| 金棕色是什么颜色| 硬下疳是什么样子| 胆囊壁胆固醇结晶是什么意思| 梦见蜘蛛网是什么意思| 手凉是什么原因| 五月一日是什么节日| 为什么人会做梦| 罗宾尼手表什么档次| g6pd筛查是检查什么| 大道无为是什么意思| 从来不吃窝边草是什么生肖| 刚怀孕吃什么最好最营养| 一百岁叫什么之年| 车厘子与樱桃有什么区别| 转载是什么意思| 什么是dha| 暗送秋波是什么意思| 小孩做ct对身体有什么影响| 碘过量会导致什么疾病| 什么叫服务贸易| 地主是什么生肖| 道心是什么意思| 清肺火肺热吃什么药最有效| 什么的海藻| 梦见背小孩是什么意思| 去减一笔变成什么字| 男生一般什么时候停止长高| 开化龙顶属于什么茶| 吃什么水果对肠胃好| 阴盛格阳是什么意思| 幽门杆菌的症状是什么| 鱼刺卡喉咙挂什么科| 翡翠的种水是什么意思| 滋阴补肾是什么意思| 紧急避孕药什么时候吃最好| 干咳无痰吃什么药| 牛建读什么| 黄泉是什么意思| 羽字五行属什么的| 焦虑症应该挂什么科室| 淋巴细胞比率偏高是什么意思| 出其不意下一句是什么| 什么是电解质饮料| 有朝一日是什么生肖| 男士阴囊湿疹用什么药膏| 为什么癌症治不好| 周文王叫什么| 吃羊肉不能吃什么| 人潮涌动是什么意思| 孤僻的人给人什么感觉| 手脱皮缺什么维生素| 什么杯子不能装水| 真菌感染吃什么药| 嬴稷和嬴政什么关系| 口臭口苦吃什么药最好| 什么食物养肝护肝最好| 慢性肠胃炎吃什么药| 浪琴名匠系列什么档次| 吃饭恶心想吐是什么原因| 指甲是白色的是什么原因| 小山羊是什么病| 梦见修路什么意思| 4月10号什么星座| 胃不好应该吃什么| 暇步士属于什么档次| 傧相是什么意思| 打升白针有什么副作用| 富贵竹开花什么预兆| 腰椎间盘突出压迫神经吃什么药| 古代地龙是什么| 2009年是什么年| 厌恶是什么意思| 女人脾虚吃什么最好| 怀孕会出现什么状况| 拔罐的原理是什么| 为什么头皮会疼| 结石挂什么科| 什么牌子的燕麦片最好| 弥漫性肝病是什么意思| 西瓜有什么营养和功效| 癸亥五行属什么| zutter是什么意思| 心眼小是什么意思| 梦见自己被绑架了是什么意思| 长宽高用什么字母表示| 补肾益精是什么意思| 慢性浅表性胃炎是什么意思| 向日葵什么时候成熟| 喝枸杞有什么好处| 全身出虚汗多是什么原因造成的| 杨桃什么季节成熟| sp什么意思| 低压高吃什么药最有效| 失信是什么意思| 眼压是什么| 父母都没有狐臭为什么孩子会有呢| 脱肛是什么原因造成的| 阿玛尼手表算什么档次| 过誉是什么意思| 发烧看什么科室| 七点半是什么时辰| 百日咳是什么引起的| 酒曲是什么| 下眼皮肿是什么原因| 什么属相不能挂山水画| 飞机杯是什么感觉| 中二病是什么| 小孩子注意力不集中是什么原因| 撕脱性骨折是什么意思| 尘肺病吃什么能排出尘| 易烊千玺什么星座| 意大利全称是什么| 被蟑螂咬了擦什么药| 朱砂痣什么意思| 什么是潮汐车道| 抗炎和消炎有什么区别| 缪斯女神什么意思| 头疼发烧是什么原因| 吃什么盐最好| 荣耀是什么品牌| 青龙男是什么意思| 月加一笔是什么字| ict是什么意思| 做可乐鸡翅用什么可乐| 油菜花像什么| 三七粉什么人不适合吃| 梅毒早期什么症状| 神采奕奕是什么意思| 西瓜吃多了有什么坏处| 阴阳怪气是什么意思| 肾检查挂什么科| 家里停电打什么电话| 爸爸的哥哥叫什么| 崽崽是什么意思| 全脂乳粉是什么| 子宫腺肌症有什么症状| 阳痿早泄吃什么药最好| 什么方法睡觉快速入睡| 脉压差小是什么原因| 补钙什么时间段最好| 人参长什么样子图片| viagra是什么药| 说梦话是什么原因| 眼睛突然出血是什么原因导致| 无济于事的意思是什么| 木变石是什么| 晚上吃什么有助于睡眠| 什么叫透析| 孵化基地是什么意思| 吃什么能长胖| 副县级是什么级别| iga是什么意思| 核糖体是什么| 伤口结痂为什么会痒| 喝竹叶水有什么好处| 七情六欲是什么意思| 仙草粉是什么做的| 颈动脉斑块吃什么药效果最好| 身份证借给别人有什么危害性| 尿粒细胞酯酶阳性什么意思| 窦性心律不齐是什么情况| 佛法无边是什么生肖| 通透是什么意思| 本子什么意思| 熊猫属于什么科| 镭射是什么| 西门子洗衣机不脱水是什么原因| 我一言难尽忍不住伤心是什么歌| 洧是什么意思| 淘米水洗脸有什么好处| 婴儿掉头发是什么原因| 口苦吃什么中成药| 半干型黄酒是什么意思| 吃什么去肝火见效快| 罗宾尼手表什么档次| 白陶土样便见于什么病| 吃什么对甲状腺有好处| 大便细是什么原因| 针眼是什么原因引起的| 尿蛋白1十是什么意思| goldlion是什么牌子| 为什么手会脱皮| 西安香烟有什么牌子| 小三最怕什么| 血气方刚什么意思| 吃什么能瘦| 芝士和奶酪有什么区别| 定心丸什么意思| 糯叽叽什么意思| 形态什么| 血管炎不能吃什么食物| 花中皇后指的是什么花| 湿疹长什么样子| 六月六日是什么星座| 塔罗牌逆位是什么意思| 月经期间适合吃什么水果| 贫血的人适合喝什么茶| 百度

第二届全国产后康复大会在长沙召开——新华网——湖南

百度 另外从售价表现来看,版本的入门级车型要比顶配车型要便宜不少,并且手动挡+小排量涡轮增压发动机还可以获得更多驾驶乐趣,对于注重操控体验的消费者来说这款车型还是比较划算的。

In linear algebra, a symmetric matrix is a square matrix that is equal to its transpose. Formally,

Symmetry of a 5×5 matrix

Because equal matrices have equal dimensions, only square matrices can be symmetric.

The entries of a symmetric matrix are symmetric with respect to the main diagonal. So if denotes the entry in the th row and th column then

for all indices and

Every square diagonal matrix is symmetric, since all off-diagonal elements are zero. Similarly in characteristic different from 2, each diagonal element of a skew-symmetric matrix must be zero, since each is its own negative.

In linear algebra, a real symmetric matrix represents a self-adjoint operator[1] represented in an orthonormal basis over a real inner product space. The corresponding object for a complex inner product space is a Hermitian matrix with complex-valued entries, which is equal to its conjugate transpose. Therefore, in linear algebra over the complex numbers, it is often assumed that a symmetric matrix refers to one which has real-valued entries. Symmetric matrices appear naturally in a variety of applications, and typical numerical linear algebra software makes special accommodations for them.

Example

edit

The following   matrix is symmetric:   Since  .

Properties

edit

Basic properties

edit
  • The sum and difference of two symmetric matrices is symmetric.
  • This is not always true for the product: given symmetric matrices   and  , then   is symmetric if and only if   and   commute, i.e., if  .
  • For any integer  ,   is symmetric if   is symmetric.
  • Rank of a symmetric matrix   is equal to the number of non-zero eigenvalues of  .

Decomposition into symmetric and skew-symmetric

edit

Any square matrix can uniquely be written as sum of a symmetric and a skew-symmetric matrix. This decomposition is known as the Toeplitz decomposition. Let   denote the space of   matrices. If   denotes the space of   symmetric matrices and   the space of   skew-symmetric matrices then   and  , i.e.   where   denotes the direct sum. Let   then  

Notice that   and  . This is true for every square matrix   with entries from any field whose characteristic is different from 2.

A symmetric   matrix is determined by   scalars (the number of entries on or above the main diagonal). Similarly, a skew-symmetric matrix is determined by   scalars (the number of entries above the main diagonal).

Matrix congruent to a symmetric matrix

edit

Any matrix congruent to a symmetric matrix is again symmetric: if   is a symmetric matrix, then so is   for any matrix  .

Symmetry implies normality

edit

A (real-valued) symmetric matrix is necessarily a normal matrix.

Real symmetric matrices

edit

Denote by   the standard inner product on  . The real   matrix   is symmetric if and only if  

Since this definition is independent of the choice of basis, symmetry is a property that depends only on the linear operator A and a choice of inner product. This characterization of symmetry is useful, for example, in differential geometry, for each tangent space to a manifold may be endowed with an inner product, giving rise to what is called a Riemannian manifold. Another area where this formulation is used is in Hilbert spaces.

The finite-dimensional spectral theorem says that any symmetric matrix whose entries are real can be diagonalized by an orthogonal matrix. More explicitly: For every real symmetric matrix   there exists a real orthogonal matrix   such that   is a diagonal matrix. Every real symmetric matrix is thus, up to choice of an orthonormal basis, a diagonal matrix.

If   and   are   real symmetric matrices that commute, then they can be simultaneously diagonalized by an orthogonal matrix:[2] there exists a basis of   such that every element of the basis is an eigenvector for both   and  .

Every real symmetric matrix is Hermitian, and therefore all its eigenvalues are real. (In fact, the eigenvalues are the entries in the diagonal matrix   (above), and therefore   is uniquely determined by   up to the order of its entries.) Essentially, the property of being symmetric for real matrices corresponds to the property of being Hermitian for complex matrices.

Complex symmetric matrices

edit

A complex symmetric matrix can be 'diagonalized' using a unitary matrix: thus if   is a complex symmetric matrix, there is a unitary matrix   such that   is a real diagonal matrix with non-negative entries. This result is referred to as the Autonne–Takagi factorization. It was originally proved by Léon Autonne (1915) and Teiji Takagi (1925) and rediscovered with different proofs by several other mathematicians.[3][4] In fact, the matrix   is Hermitian and positive semi-definite, so there is a unitary matrix   such that   is diagonal with non-negative real entries. Thus   is complex symmetric with   real. Writing   with   and   real symmetric matrices,  . Thus  . Since   and   commute, there is a real orthogonal matrix   such that both   and   are diagonal. Setting   (a unitary matrix), the matrix   is complex diagonal. Pre-multiplying   by a suitable diagonal unitary matrix (which preserves unitarity of  ), the diagonal entries of   can be made to be real and non-negative as desired. To construct this matrix, we express the diagonal matrix as  . The matrix we seek is simply given by  . Clearly   as desired, so we make the modification  . Since their squares are the eigenvalues of  , they coincide with the singular values of  . (Note, about the eigen-decomposition of a complex symmetric matrix  , the Jordan normal form of   may not be diagonal, therefore   may not be diagonalized by any similarity transformation.)

Decomposition

edit

Using the Jordan normal form, one can prove that every square real matrix can be written as a product of two real symmetric matrices, and every square complex matrix can be written as a product of two complex symmetric matrices.[5]

Every real non-singular matrix can be uniquely factored as the product of an orthogonal matrix and a symmetric positive definite matrix, which is called a polar decomposition. Singular matrices can also be factored, but not uniquely.

Cholesky decomposition states that every real positive-definite symmetric matrix   is a product of a lower-triangular matrix   and its transpose,  

If the matrix is symmetric indefinite, it may be still decomposed as   where   is a permutation matrix (arising from the need to pivot),   a lower unit triangular matrix, and   is a direct sum of symmetric   and   blocks, which is called Bunch–Kaufman decomposition [6]

A general (complex) symmetric matrix may be defective and thus not be diagonalizable. If   is diagonalizable it may be decomposed as   where   is an orthogonal matrix  , and   is a diagonal matrix of the eigenvalues of  . In the special case that   is real symmetric, then   and   are also real. To see orthogonality, suppose   and   are eigenvectors corresponding to distinct eigenvalues  ,  . Then  

Since   and   are distinct, we have  .

Hessian

edit

Symmetric   matrices of real functions appear as the Hessians of twice differentiable functions of   real variables (the continuity of the second derivative is not needed, despite common belief to the opposite[7]).

Every quadratic form   on   can be uniquely written in the form   with a symmetric   matrix  . Because of the above spectral theorem, one can then say that every quadratic form, up to the choice of an orthonormal basis of  , "looks like"   with real numbers  . This considerably simplifies the study of quadratic forms, as well as the study of the level sets   which are generalizations of conic sections.

This is important partly because the second-order behavior of every smooth multi-variable function is described by the quadratic form belonging to the function's Hessian; this is a consequence of Taylor's theorem.

Symmetrizable matrix

edit

An   matrix   is said to be symmetrizable if there exists an invertible diagonal matrix   and symmetric matrix   such that  

The transpose of a symmetrizable matrix is symmetrizable, since   and   is symmetric. A matrix   is symmetrizable if and only if the following conditions are met:

  1.   implies   for all  
  2.   for any finite sequence  

See also

edit

Other types of symmetry or pattern in square matrices have special names; see for example:

See also symmetry in mathematics.

Notes

edit
  1. ^ Jesús Rojo García (1986). álgebra lineal (in Spanish) (2nd ed.). Editorial AC. ISBN 84-7288-120-2.
  2. ^ Bellman, Richard (1997). Introduction to Matrix Analysis (2nd ed.). SIAM. ISBN 08-9871-399-4.
  3. ^ Horn & Johnson 2013, pp. 263, 278
  4. ^ See:
  5. ^ Bosch, A. J. (1986). "The factorization of a square matrix into two symmetric matrices". American Mathematical Monthly. 93 (6): 462–464. doi:10.2307/2323471. JSTOR 2323471.
  6. ^ Golub, G.H.; van Loan, C.F. (1996). Matrix Computations. Johns Hopkins University Press. ISBN 0-8018-5413-X. OCLC 34515797.
  7. ^ Dieudonné, Jean A. (1969). "Theorem (8.12.2)". Foundations of Modern Analysis. Academic Press. p. 180. ISBN 0-12-215550-5. OCLC 576465.

References

edit
  • Horn, Roger A.; Johnson, Charles R. (2013), Matrix analysis (2nd ed.), Cambridge University Press, ISBN 978-0-521-54823-6
edit
食道癌有什么症状 感冒全身酸痛吃什么药 血压高吃什么药最好 perry是什么意思 黄精配什么提高性功能
世界第一长河是什么河 越南有什么特产 黑豚肉是什么肉 囊中之物是什么意思 18k是什么意思
欢天喜地是什么生肖 阴蒂痒是什么原因 心理学属于什么学科 单的姓氏读音是什么 09年是什么年
丘疹是什么原因引起的 子宫腺肌症吃什么药最有效 肌酐偏高是什么意思 2015年是什么生肖 云母是什么
江小白是什么酒hcv8jop9ns1r.cn 支气管炎能吃什么水果0735v.com 乳腺结节吃什么好hcv9jop2ns7r.cn 无产阶级是什么意思hcv8jop8ns6r.cn 高胆固醇血症是什么病hcv8jop9ns0r.cn
宁的五行属性是什么hcv7jop6ns9r.cn few是什么意思hcv7jop6ns0r.cn 吃什么补肺养肺比较好hcv8jop4ns2r.cn vcr是什么hcv8jop5ns0r.cn 意志力什么意思hcv7jop6ns5r.cn
痔疮复发的原因是什么hcv8jop3ns9r.cn 羊五行属什么hcv8jop1ns3r.cn 香油吃多了有什么害处hcv9jop4ns2r.cn 血糖高的人适合吃什么水果helloaicloud.com 大是大非是什么意思hkuteam.com
6月12日是什么节日hcv9jop5ns3r.cn 圆是什么生肖hcv8jop3ns3r.cn 狗狗拉稀是什么原因hcv8jop8ns4r.cn ppap是什么sscsqa.com 白月光是什么hcv9jop0ns8r.cn
百度